If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=91
We move all terms to the left:
b^2-(91)=0
a = 1; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·1·(-91)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{91}}{2*1}=\frac{0-2\sqrt{91}}{2} =-\frac{2\sqrt{91}}{2} =-\sqrt{91} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{91}}{2*1}=\frac{0+2\sqrt{91}}{2} =\frac{2\sqrt{91}}{2} =\sqrt{91} $
| 30-8k=6(-5-3k) | | (7-y)/4=5 | | 7x+4=-3+4x+16 | | 0.20(y-5)+0.04y=0.08y-0.6 | | 2x-3=19-6x | | 1+-3m=13 | | 3.4+6.3=-1.7z+47.1 | | -17=5+x | | 4x–15=2x–21 | | 7−3(−9x+3)=11 | | 62,45a+17,99a=44,95+18,03a | | 7/m=m/14 | | Y=25/6x-34 | | 5x+2x+100=180 | | x−2=-3 | | 7-4y=-38 | | 1/20=x/500 | | 2(7+x)=46 | | F(x)=5+8x^2 | | 49x=91400 | | 15x-1=74 | | 0.30x+0.05(2-x)=0.10(-39) | | (x+8)/(x^2+9)=0 | | 2(x+4)=8x+20 | | 15x^2+3x-2=0 | | 3(6x-2)+14=18(x+1) | | 102=1/6x | | 100+5x+2x=180 | | 20/5+2/5x=5x | | -2-7x+8=-3x-22 | | -2r=-20 | | 1c÷-9+6=19 |